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Brownian Motion in a Fluid in Eiongational Flow 
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Brownian motion of a spherical particle in stationary elongational flow is 
studied. We derive the Langevin equation together with the fluctuation- 
dissipation theorem for the particle from nonequilibrium fluctuating 
hydrodynamics to linear order in the elongation-rate-dependent inverse 
penetration depths. We then analyze how the velocity autocorrelation function 
as well as the mean square displacement are modified by the elongational flow. 
We find that for times small compared to the inverse elongation rate the 
behavior is similar to that found in the absence of the elongational flow. Upon 
approaching times comparable to the inverse elongation rate the behavior 
changes and one passes into a time domain where it becomes fundamentally dif- 
ferent. In particular, we discuss the modification of the t 3/2 long-time tail of the 
velocity autocorrelation function and comment on the resulting contribution to 
the mean square displacement. The possibility of defining a diffusion coefficient 
in both time domains is discussed. 

KEY WORDS:  Brownian motion; elongational flow; fluctuation-dissipation 
theorem; fluctuations around stationary states. 

1. I N T R O D U C T I O N  

In 1851 Stokes (l) calculated the frequency-dependent friction coefficient for 
an oscillating sphere in a fluid which is at rest far from the sphere. It is 
simple to generalize the result to a fluid which is itself in oscillatory 
homogeneous flow. In 1924 Faxen/2~ generalized Stokes' result to the case 
that the fluid is in stationary but inhomogeneous flow. In ref. 3, Faxen's 
theorem for stationary flow was generalized to the nonstationary and 
inhomogeneous case. Using this generalization of Faxen's theorem in a 
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fluctuating fluid, it was then possible to give an explicit expression for the 
random Langevin force in terms of the fluctuations of the fluid velocity. 
Using the fluctuation-dissipation theorem for the Navier-Stokes Langevin 
equation, it was then shown that the random force on the particle satisfies 
the usual fluctuation-dissipation theorem/4~ This verifies the well-known 
fact that the Brownian motion of a colloidal particle is a consequence 
of the fluctuations of the carrier fluid. The relevance of fluctuating 
hydrodynamics is clearly expressed in the study of the Brownian motion of 
a particle. In fact, the friction coefficient enters the expression for the 
velocity autocorrelation function and its frequency dependence is the origin 
of the long-time tail of this velocity correlation function. 

The above analysis was carried out using the linearized Navie~Stokes 
Langevin equation in an equilibrium fluid. It is tempting to assume that the 
same program could be carried out when the fluid far from the particle is in 
stationary elongational flow. Such a program was started in a previous 
paper (5~ (to be referred to as paper I). There we analyzed the motion of a 
sphere relative to a fluid in elongational flow. We concluded that the 
penetration depth depends on the frequency, the elongation rate, and the 
direction. As a consequence, we find in this case a friction tensor which also 
depends on the frequency, the elongation rate, and the direction expressing 
the symmetry breaking due to the stationary motion of the fluid. 

Our main purpose in this paper is to complete the program with the 
study of Brownian motion. We will analyze how the dependence of the 
friction tensor on the elongation rate affects the behavior of the velocity 
autocorrelation function and of the mean square displacement. In Section 2 
we discuss the validity of the Langevin equation for the Brownian particle 
and we derive the necessary fluctuation-dissipation theorem to the 
appropriate order in the elongation rate. Section 3 is devoted to the com- 
putation of the velocity autocorrelation function. We analyze its long-time 
behavior and we find a contribution proportional to t - m  in addition to 
the usual t 3/2 long-time tail. An explicit expression is given for the 
frequency-dependent diffusion tensor. In Section 4 we calculate the mean 
square displacement of the Brownian particle and discuss how the depen- 
dence of the friction coefficient on the elongation rate and the frequency 
modifies the results given by Foister and van de Ven. (6) Some concluding 
remarks are given in the final section. 

2. T H E  L A N G E V I N  E Q U A T I O N  A N D  THE 
F L U C T U A T I O N - D I S S I P A T I O N  T H E O R E M  

Our purpose in this section is to derive the Langevin equation for 
the Brownian particle and to show that the stochastic force satisfies a 
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fluctuation-dissipation theorem. The procedure to be followed runs closely 
parallel to that employed in ref. 4 to get the same results but at equilibrium. 

Let us consider a spherical Brownian particle moving with respect to 
an incompressible fluid in elongational flow: 

v0(r ) = / ? "  r (2 .1)  

Here fl is a symmetric traceless tensor. In paper I, where we did not 
consider fluctuations, we showed that the force excerted on the particle is 
given by 

K(co) = -~'(co). [u(~o) - / ? .  R(co)] (2.2) 

where u(o)) and R(oJ) are the frequency-dependent velocity and position of 
the particle and ((co) is the frequency-dependent friction tensor. In the 
frame of reference in which B is diagonal, the friction tensor is found to be 
also diagonal 

~u(~o) = ~j(~o) aij (2.3) 

a n d  we find to linear order in ac~i 

Here ~/is the shear viscosity and a is the radius of the sphere. The friction 
tensor is furthermore a function of the inverse penetratio~a depths 

:~j= [(-i~o+flyv]l/2; R e ~ > 0  (2.5) 

Here/~i are the eigenvalues of/? and v = q/p (where p is the density of the 
fluid) is the kinematic viscosity. It follows from Eqs. (2.3) and (2.4) that in 
the limit fi j= 0 the friction tensor reduces to the usual (1~ result 

= ~j = 6~qa(1 + a~) (2.6) 

where e = ~j(flj= 0 )=  (-i~o/v) 1/2, to linear order in ac~. 
If the motion takes place in a fluctuating fluid, the total force exerted 

on the particle contains a random contribution due to the fluctuating part 
of the pressure tensor. The force is given by 

K = - f s (p + pvv)- ndS  (2.7) 

where P is the pressure tensor and v the velocity field of the fluid. S is a 
surface which is an infinitesimal distance outside the surface and which is 
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not moving. The motion of the fluid is described by means of the Navier- 
Stokes Langevin equation 

p Ov/Ot = - V "  (P +pvv) (2.8) 

where the pressure tensor is given by 

P~ = p 6  o. + t/(V,vj + Vjv,) + a o. (2.9) 

Here p is the hydrostatic pressure and a is a random contribution with a 
zero average which satisfies the following fluctuation-dissipation theorem: 

(a i j ( r ,  t )  o-kl(r', t') ) = 2k B Tq(a/kajt + bitajk) 3(r -- r') 3(t -- t') (2.10) 

valid for an incompressible fluid, where ( - - - )  now indicates the average in 
the stationary state, kB is Boltzmann's constant, and T is the temperature. 
Notice the fact that in the context of nonequilibrium fluctuating 
hydrodynamics (see, for example, ref. 7) this fluctuation-dissipation 
theorem is assumed to be valid also in a fluid in stationary elongational 
flow, an assumption which is reasonable in view of the local nature of this 
correlation function. From Eqs. (2.7) and (2.8) it is clear that the motions 
of the fluid and the particle are coupled. We may now identify the random 
force KR on the particle by writing the total force as a sum of a systematic 
part and a random part 

K(~) = - ( (m)  " [u(co)-,8" R(~o)] + KR(oJ ) (2.11) 

Thus, the equation of motion of the particle becomes the following 
stochastic differential equation: 

- i m m u  = - ( "  (u - , 8 "  R) + KR (2.12) 

We want to show that Eq. (2.12) is a Langevin equation. To this end, 
we need to investigate the statistical properties of the random force K R. It 
follows from the definition of KR and the fact that the average of Eq. (2.11) 
is given by Eq. (2.2) that ( K R ) = 0 .  Following a method discussed in 
paragraph 4 of ref. 4 to derive the fluctuation-dissipation theorem, we will 
compute the quantity 

(u(co) - '8" R(o~)) - (KR(m) K*(co')) �9 ( u * ( m ' ) - p "  R*(a/ ) )  (2.13) 

Define the fluctuation of an unspecified quantity 6 as 

6~ = ~ -  ( ~ )  (2.14) 
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and the velocities in a coordinate flame moving along with the unper- 
turbed fluid velocity at the center of the particle by 

V = v - p . R  and U = u - p ' R  (2.15) 

Then, using Eqs. (2.11) and (2.14) and the fact that in our case the friction 
tensor is symmetric, one has the identity 

<U>.K R= < U > - g K -  <K>. fU  (2.16) 

which also can be written as 

( ,  

< U > ' K R =  - i s  [ < V > . g ( P + p v v ) - b V "  < P + p v v > ] . n  dS (2.17) 

where we have used "stick" boundary condition at the surface of the 
sphere. Using Gauss' theorem and the Fourier transform of Eq. (2.8) with 
respect to the time, one finds from Eq. (2.17) 

<U> 'KR = -fvc [i~op(6v. < V > - b V .  <v>) 

+ ( v < v > ) : b ( e + p v v ) - ( v , ~ v ) :  <p+pvv>]  (2.18) 

In this last expression V~ is the volume of the fluid outside the sphere. 
Neglecting terms of linear order in fi, one may replace v by V and 3v by 
bV, so that the first term inside brackets disappears. For the same reason 
we may replace v by V in the convection terms, which than become of third 
order in V, and may therefore also be neglected. If we subsequently sub- 
stitute Eq. (2.9) for P and the analogous equation for 6 P, use the incom- 
pressibility condition, and again replace v by V and ~v by 3V, we obtain 

- [  V < V > ' a d r  (2.19) <U> "KR= 
d v, 

As in ref. 4, this last equation together with Eq. (2.10) gives 

<U(o))>. <KR(o) ) K*(o)')) �9 <U*(~o')> 

= 4kB T~/. 2~6(~o - ~o') fvc V<V(r, o)) >: V<V*(r, ~o)> dr (2.20) 

where the overbar indicates the symmetric traceless part of a tensor. 
Next we also compute the quantity 

<U>.  ( ( +  (*).  <U*)  = <U>.  < K * > -  <K>. <U*> (2.21) 
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where the dagger indicates the Hermitian conjugate. Following the steps 
indicated above (see also ref. 4), one gets, neglecting again terms of linear 
and higher order in the rate of elongation, 

( U ) .  ( ( +  ( t ) .  ( U * )  = 2r/I V ( V ) '  V ( V * )  dr (2.22) 
Vc 

Comparing Eqs. (2.20) and (2.22), one finds the fluctuation-dissipation 
theorem for the random force 

(KR(co) K*(o ) ' ) )=  kB T[((co)+ (*(co)]. 2~6(co - co') (2.23) 

As is clear from our analysis above, where the terms of linear and higher 
order in the elongation rate have been neglected, this fluctuation- 
dissipation theorem is only correct to linear order in ac~i. Notice in this 
context that the elongation rate is quadratic in c~i. In the limit of zero 
elongation rate, Eq. (2.23) reduces to the fluctuation-dissipation theorem 
for a fluid at equilibrium to linear order in ac~. Two important differences 
with the equilibrium case should be pointed out. The first one concerns the 
dependence of the friction tensor on the direction. This gives rise to 
correlations between the different components of the random force if a 
coordinate system is used in which the friction tensor is not diagonal. As a 
consequence, the velocity autocorrelation function matrix will contain 
analogous nondiagonal terms. The second difference originates in the fact 
that the friction tensor depends on the elongation rate through c~,. In the 
zero-frequency limit the friction tensor does not reduce to the Stokes value. 
The consequences for the diffusion tensor will be discussed in the next 
sections in more detail. 

3. V E L O C I T Y  A U T O C O R R E L A T I O N  F U N C T I O N  

Combining the Langevin equation (2.12) with u(co)= -icoR(co), one 
finds as solution for the fluctuations of the velocity 

c~u(co)=ico[mco2+( �9 (ico+/?)] I "K e (3.1) 

Using the fluctuation-dissipation theorem (2.23), one finds for the velocity 
autocorrelation function 

(6u(~o) 6 u*(co') > = S(co). 2rt6(co - co') (3.2) 

where the spectral density S(co), which depends clearly on the elongation 
rate, is given by 

S(co) = k B T o o 2 E m ( o 2 + (  �9 (ico +,8)] ' .  ( ( + ( * ) .  [m(.o2 + (--/6.o q-/~~). (~]  -1 

(3.3) 
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In the coordinate frame in which fl is diagonal the spectral density is also 
diagonal and has the form 

So(co ) = Sj(co) 3~ (3.4) 

where the diagonal terms are 

Sj(co)=2kBrcoZ[mco2+ ~j(ico + flj)] - '  (Re ~j)[mco2 + ( - ico+f l j )  ~*] -~ 

(3.5) 

Introducing the complex relaxation times 

2m[ ( m~j~l/2~ -1 
- - -  1+ 1 + 4  r~,j ~j 4 ; /  J ' 

we may write the spectral density as 

-7--2ml ( 1 -  1+4mflJ~l/21 1 

(3.6) 

2ku TCO 2 Re ~j 
Sj(CO) = m2(c ~ + i/Z D,j)(CO -- i/Z*,j)(CO + i/ZCd)(CO -- i/r},j) 

(3.7) 

Using the fact that in usual experiments fli~l~i/m], we find that the 
relaxation times reduce to 

rD,j=m/~j,  rc, j =  --flj] (3.8) 

and from now on we will use these values. As a consequence, [zz~,jk "~ ]zc, jl 
and one may therefore distinguish three regimes: 

(i) t ~  [m/~j]; this we call the inertial regime and is the regime in 
which inertial effects dominate the behavior. 

(ii) ]m/~jL~t~lfi]-'~[; this we call the diffusion regime, as the 
behavior is most analogous to the usual diffusion process. 

(iii) [fill[ ~ t; this we call the convection regime. 

Notice the fact that the transition times from one regime to another 
depend on the direction. It should be realized that the dependence of the 
friction coefficients on the elongation rate modifies the behavior in all three 
regimes. As these modifications are small and not very interesting in the 
inertial regime, we take co ,~ ]~j/m[, so that Eq. (3.7) reduces to 

1 co2 
Sj(co) = 2kB TRe (3.9) 

~j (o) -- iflj)(co + iflj) 
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Using Eq. (2.4), we have to linear order in ei 

~j - 6rcqa + -iO . m 

In the diffusion regime, co > Iflyl and one obtains to linear order in flj 

ej= (-ico/v) '/2 (1 + iflj2co) = c~(1 + ifljZco) (3.11) 

Substituting this expression in Eq. (3.10) then gives, using the fact that /?  is 
traceless, 

1/~j = (1/6~qa)[ 1 - cr + 7iflj20co)] (3.12) 

Upon substitution of this equation in Eq. (3.9), we obtain 

[l_ a (l+2yd )j Re ico7 Sj(co) = 3--~qa Re 7i[3j'~q (1 flJ (3.13) 

The 1 inside the square brackets corresponds to the contribution which is 
found if one uses the Stokes friction coefficient. If one neglects the term 
proportional to ae, the description reduces to the one used, e.g., by Foister 
and van de Ven. (6) The term proportional to a~ is the term which for//j  = 0 
gives the t -3/2 long-time tail of the velocity autocorrelation function. The/~j 
dependence outside the brackets modifies the contribution from the Stokes 
term as well as the long-time tail. As we have expanded 1/r in [ljco, we 
should in fact also expand the last term. While this is convenient for the 
purpose of calculating the modification of the long-time tail, it is not 
convenient for the modification of the other term and we thus use 

E Sj(co)=3--~aRe 1 a~ l+2--~m)J (3.14) ico + flj 

Inverse Fourier transformation 3 of this expression gives 

kBT[26(t)+flje~Jt+a(4rrv) 1/2t 3 / 2 ( 1 - 7  fljt)] (3.15a) s a t )  = 6 - f f  a 

- I ( 7 ) ]  k~T 2~(t)+flj+a(4rcv) l/2t 3/2 1- -~ f i j t  (3.15b) 
6~rla 

where we used Ifljt[ ~ 1 in the last identity. Equations (3.15) show how the 
velocity autocorrelation function in the diffusion regime is modified by the 

3 One must be careful with the choice of the contour in the complex ~o plane in order to assure 

the proper causal nature of the Green's function. 
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shear gradient to linear order in flj. Because of the traceless nature of/?, the 
trace of the velocity autocorrelation function 

Tr  S(t)  = T, S j ( t )  = T j 2~zr/a I-6(t) + a(4zcv) -1/2 t 3/2] (3.16) 

is not modified to linear order in /~j in the diffusion regime. When one 
approaches the convection regime, flit becomes comparable to I, and 
higher powers of flit should also be taken into account. 

In the convection regime one has co < [fljl, so that Eq. (3.9) reduces to 

Sj(co ) = 2kB T(co/flj) 2 Re[ 1/~j(co = 0)] (3.17) 

This expression would seem to imply that Sj(t)  has decayed to zero in this 
regime. While this conclusion is essentially correct in directions where 
//j < 0, it is incorrect in directions for which flj > 0. In these directions, as is 
clear from Eq. (3.15a), the velocity autocorrelation function diverges. In 
fact, if one uses the Stokes friction, one has 

k B T  
Sj(t)  = 6-~qa 1-26(t) + fi,e&'] (3.18) 

which is valid in both the diffusion and convection regimes in this case. We 
have not calculated the modified behavior of the long-time tail in the 
convection regime, but it seems clear that it will also contain factors 
proportional to exp(fiJ) and will thus have similar convergence problems. 

Because of the rather complex behavior of the velocity autocorrelation 
function, it is not really clear how a frequency-independent diffusion 
coefficient should be defined in the two regimes. We will postpone the 
discussion of a possible definition of such a quantity to the next section, 
where we study the mean square displacement. 

Of course one may always define a frequency-dependent diffusion 
tensor using 

1 fo o D(co) = ~  S(e)) = dt (~u(t) 6u(0)) cos cot (3.19) 

If one then restricts the value of the frequency to the diffusion regime where 
tfljl < e), the above expression together with Eq. (3.9) gives 

D0(~o ) = Dj(co) a,j = kB T Re[ 1/{j(co)] 60 (3.20) 

which is the familiar expression in terms of the frequency-dependent 
friction coefficient. In the convection regime where co ~ Ifijl one obtains 

Dj(co ) = kn T(co/fij) 2 Re[l/is(co = 0)] (3.21) 

which is rather different from the expression in the diffusion regime. 
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4. M E A N  SQUARE D I S P L A C E M E N T  

In order to clarify the subsequent discussion we will first consider the 
special case in which the friction tensor is given by the Stokes value 

~tj(O)) = 6~zrlacSij (4.1) 

Substituting in Eq. (2.12), Fourier transforming back, and using a ( t )=  
dR(t) /d t  gives 

m d2R(t)/dt  2 = -67zqa[dR(t) /dt  - f t .  R(t)] + KR(t ) (4.2) 

It is easy to solve this expression explicitly and one obtains 

Rj(t) = [ m ( - 1 / r c . j +  1/rD, j)] - I  dt' { e x p [ - ( t - t ' ) / ~ c , j ]  

- exp[ - ( t -  t')/~D,j] } KR,j(t ') (4.3) 

where Zc,.~ and rD, j are given by Eq. (3.8), where one should substitute 
6~t/a instead of ~j. Note the fact that we took not only Rj(0)= 0 but also 
uj(0) = 0. Using again the fact that I]~iJ '~ 67r~la/m, one may use in this case 

ZD, j = m/6rcqa, rc, j = - f l j  1 (4.4) 

Substituting these simplifications in Eq. (4.3), one finds 

et  
RAt) = (i/6~rla) Jn dt' {exp[f l j ( t -  t ')] - exp[- ~ 6 ~ ~ a ~ t t' )/m ] } KR, j(t ')  

(4,5) 

Notice the fact that both in Eq. (4.3) and in Eq. (4.5) the initial condition 
for the particle sets the position as well as the velocity equal to zero at t = 0 
so that the random force only contributes to 6Rj(t) after t = 0. Using the 
above equations and the fluctuation-dissipation theorem for the random 
force we find for the mean square displacement 

( R~(t) ) = Do{ [exp(2/~fl) - 1 ]/flj - 4 [exp(/~j - 67rtla/m)t - 1 ] } 

x {(/?j- 6 ~ q a / m ) -  [ e x p ( -  12~t la t /m)-  1](m/67rtla)} -1 (4.6) 

where Do =kB  T/6ntla is the Stokes Einstein diffusion coefficient. Beyond 
the inertial regime, i.e., t ~> m/6rr~la, the mean square displacement reduces 
to  

(RZ( t ) )  = Do[exp(2fifl) - 1 ]//~j (4.7) 
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This expression is the same as the one given by Foister and van de Ven (6) if 
one uses a coordinate frame rotated 45 ~ with respect to the one they use in 
their solution. In the diffusion regime the above equation gives 

(R~(t) > = 2Dof(1 +/~jt + . . .)  (4.8) 

Since in the diffusion regime [fljtl ~ 1, it follows from Eq. (4.8) that the 
diffusion coefficient is most appropriately defined by Do. When one 
approaches the convection regime this definition is no longer correct, 
however. In the convection regime Eq. (4.7) shows that the mean square 
displacement diverges exponentially if fi; > 0, gives the diffusive value 2D0 t 
if flj = O, and approaches [Do/flj[ if fij < O. It is clear that no diffusion coef- 
ficient can be defined in the convection regime for directions where flj ~ O. 

In order to analyze how these results are modified by using ~.j(~o) 
instead of the Stokes value, we use the identity 

; ' J  t " dt" "~' ( R ~ ( t ) ) = 2  dt' ( u j ( t " ) u j ( O ) ) = 2  dt' d t " S j ( t " )  (4.9) 
~0 0 0 

It is important to realize that the mean square displacement depends on 
the initial condition for the velocity of the particle. In deriving Eq. (4.6) we 
took uj(0) = 0, whereas in the derivation of both the explicit expressions for 
Sj( t )  in the previous section and the above identity the possible values of 
uj(0) are given by a Maxwell distribution. Substitution of Eq. (3.15b) into 
Eq. (4.9) gives for the mean square displacement in the diffusion regime 

jj  4. 0t 
-c s -c s 

where r s -  m/6~tla. This lower cutoff in the integration is used to account 
for the fact that Eq. (3.15b) is only valid for times larger than v~ and is 
necessary to eliminate a divergence. Keeping only the largest power of t 
due to the long-time tail and its correction linear in flj, we obtain 

It is clear that for small values of pit the mean square displacement is the 
same as in the absence of shear. When [flJ] increases, the elongational flow 
modifies the Stokes-Einstein term as well as the term due to the long-time 
tail. The difference of 1/2 in the modification of the Stokes Einstein term is 
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due to the different initial conditions used. Given the size of the various 
contributions in Eq. (4.11), it is most appropriate to identify the Stokes- 
Einstein value Do as the time-independent diffusion coefficient in the 
diffusion regime also for a system in elongational flow. For  longer times 
when one passes into the convection regime Do can no longer be identified 
as the diffusion coefficient. In fact, the time dependence of the mean square 
displacement, like the time dependence of the velocity autocorrelation 
function, becomes such that its typical behavior is no longer diffusionlike. 

5. C O N C L U S I O N S  

We have shown that it is possible to extend the validity of the 
fluctuation-dissipation theorem to linear order in the inverse penetration 
depths. Using this extension, we were then able to discuss how the velocity 
autocorrelation function and the mean square displacement are modified 
by the dependence of the friction coefficients in the various directions on 
the rate of elongation. We have not been able to prove the validity of the 
fluctuation-dissipation theorem to higher order in the inverse penetration 
depths. In fact, this theorem may very well not be valid to higher order in 
these inverse penetration depths, as the validity of such a theorem in this 
nonequilibrium situation is certainly not self-evident. 

In elongational flow the motion of the Brownian particle in the con- 
vection regime, i.e., for times larger than the inverse elongation rate, is in 
general not diffusive. The occurrence of Taylor diffusion in the convection 
regime, for instance, for Poiseuille flow, is due in part to the presence of 
boundaries which eliminate divergences like those found above in this 
regime. 
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